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Abstract
Within the spirit of Dirac’s canonical quantization, noncommutative spacetime
field theories are introduced by making use of the reparametrization invariance
of the action and of an arbitrary non-canonical symplectic structure. This
construction implies that the constraints need to be deformed, resulting in an
automatic Drinfeld twisting of the generators of the symmetries associated
with the reparametrized theory. We illustrate our procedure for the case of a
scalar field in (1+1)-spacetime dimensions, but it can be readily generalized to
arbitrary dimensions and arbitrary types of fields.

PACS numbers: 11.10.Nx, 11.10.Ef, 02.20.Uw

1. Introduction

Even though deformation quantization has been developed for more than 30 years, mostly
in the mathematical literature (see, e.g., the nice review of the history, developments and
bifurcations of the field by Sternheimer in [1]), a large degree of the more recent involvement
of physicists in the field is due to the seminal work by Seiberg and Witten [2] who showed
how noncommutative field theories arise as low energy limits of open string theory. For a
review of the physical literature see, e.g., [3].

The term spacetime noncommutativity is widely used in field theory as a convenient way
to describe a special type of interaction consisting in mathematically deforming the product in
the algebra of field functions. However, since the arguments of the fields are the parameters
of the theory, there is very little physical basis for speaking about noncommutativity of these
parameters.

One can however find more physical substance to that designation if one recalls that
quantum mechanics can be viewed as a minisuperspace of field theory, where most of the
degrees of freedom have been frozen, and that observables there are represented by Hermitian
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operators acting on a Hilbert space, so that noncommutativity of the dynamical variables
of the system is readily understood then as the noncommutativity of their corresponding
operators. In this way, the physical argument that measurements below distances of the
order of the Planck length lose operational significance can be mathematically described by
extending the usual Heisenberg algebra of ordinary quantum mechanics to one including the
noncommutativity of the operators related to the spacetime dynamical variables. Moreover,
as we have shown elsewhere [4], the �-product deformation of functions of spacetime then
naturally results from the Weyl–Wigner–Gröenewold–Moyal (WWGM) formalism of quantum
mechanics when considering in this extended context the algebra of the Weyl-equivalent
functions corresponding to operator functions of the Heisenberg space and time operators.

Other approaches for constructing a noncommutative spacetime quantum mechanics have
been based on the idea of promoting the time parameter to the rank of a coordinate by means
of a reparametrization, whereby time becomes a function t (τ ) of a new parameter τ and thus
becomes a coordinate on the same level as the spatial coordinates xi(τ ), either by fixing the
gauge degrees of freedom [5–7] or by deforming the symplectic structure of the theory [8].
An important feature of these formulations is that, because additional degrees of freedom
are added to the original theory, first-class constraints appear in the reparametrized theory.
In order to eliminate these additional degrees of freedom one can apply gauge conditions or
follow Dirac’s quantization method and operate with the constraints on the state vectors in
order to obtain the physical states of the system.

Now, when going on to field theory both the time and space coordinates play the role of
parameters of the field, so applying commutation relations to them is, to say the least, even
more unclear; as it is the relation of this procedure to the operator spacetime noncommutativity
in quantum mechanics, particularly when we view the latter as a minisuperspace of the former
and in the light of what we have just said above.

In order to shed some additional insight into some of these issues, we explore in the
present work how the above-referred reparametrization formalism can be extended to the case
of field theory on a noncommutative spacetime. However, since we are now dealing with
a system with an infinite number of degrees of freedom, the basic idea here is to promote
the coordinates of the spacetime, that are the parameters on which the field depends, to new
fields in the ensuing reparametrized theory. This idea is not new in the case of commutative
spacetime. For example in [9] such a construction of a field theory was used as a model when
considering the canonical quantization of gravity. Making use of the results in that work, it is
possible to construct the reparametrized theory for any field theory, with as many constraints
as the number of coordinate fields being added.

Moreover, as it occurs in the case of general relativity, the parametrized field theory
is also invariant under diffeomorphisms, so such a construction provides an ideal arena for
studying these symmetries at the quantum level there. It is interesting to note that this idea
was also used in the context of string theory as a means for constructing a theory which would
be independent of the background [10], and it also appears in the context of non-relativistic
strings [11].

Once the spacetime coordinates are promoted to the rank of fields, it does make sense to
impose commutation relations among them. This can be achieved by deforming the symplectic
structure in the original theory and thus arriving at a noncommutative field theory. Such a
theory is already at the first quantization level radically different from the usual one, because—
since the coordinate fields do not commute—we cannot use their eigenstates as configuration
space bases to construct amplitudes of the state vector, which will then necessarily have to be
either functions of both the eigenvalues of the momenta field operators as well as of some of
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the coordinate fields (those that commute among themselves) or only of the eigenvalues of the
commuting momenta fields.

Another important point that we analyze in this paper is the deformed symmetries
that appear in the noncommutative theory. According to our procedure, the nature of
these deformed symmetries appears automatically since, when deforming the symplectic
structure the algebra of the constraints is broken and, in order to preserve it, it is necessary
to deform the generators of the symmetry by means of what turns out to be a Drinfeld
twist. The algorithm suggested by our procedure for this twist is quite straightforward
to implement and can be readily generalized to other types of �-products, as well as to
situations where noncommutativity involves both spacetime and momenta variables. It
also provides a framework for investigating the relations of the isometries of more general
curved noncommutative backgrounds to possible different �-product deformations of the
multiplication in the space of functions on which the spacetime diffeomorphisms act.

We should stress here that our formalism can be implemented without difficulty when
dealing with spacial noncommutativity only. However in the explicit example discussed in
section 2 we assumed for computational simplicity a two-dimensional spacetime manifold, so
obviously one of the noncommuting coordinates had to be the time. The generalization of the
formalism to higher dimensional spaces is given at the end of section 3. One should be aware
though that in theories where the time coordinate is also noncommutative there are problems
related to unitarity, see, e.g., [12, 13]. Nonetheless, in analogy to other cases discussed in the
literature [14–16], it might be possible to overcome this obstacle by proposing an appropriate
time ordering or a scalar product that makes the theory unitary.

2. Spacetime noncommutativity in field theory

In a previous paper [8], noncommutative spacetime quantum-mechanical theories were
constructed by using a reparametrization invariant action where the time parameter is elevated
to the rank of a dynamical variable. Furthermore, in order to consider the noncommutativity
between the spacetime coordinates, an arbitrary non-canonical symplectic structure was
introduced that, together with Dirac’s Hamiltonian method, led to Dirac brackets for the
spacetime dynamical variables, which when quantized can be interpreted as noncommutative.
As mentioned in the introduction, we shall apply this procedure to the case of fields in order to
investigate the implications of noncommutativity of spacetime as field variables on the algebra
of the reparametrized fields.

2.1. Reparametrization of the scalar field

To illustrate the procedure, consider for simplicity the case of a scalar field in a (D + 1)-
dimensional Minkowski spacetime M with signature (1,−1, . . . ,−1) and with a potential
V (φ). The corresponding action is then

S =
∫

dx dt

(
1

2
ηµν∂µφ∂νφ − V (φ)

)
. (2.1)

In order to parameterize the full spacetime, let us write

t = t (τ,σ), xi = xi(τ,σ), (2.2)

so that the new action in terms of the new parameters τ,σ reads

S =
∫

dτ dDσ
√−g

(
1

2
gµν∂µφ∂νφ − V (φ)

)
, (2.3)
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with the inverse metric gαβ given by

gαβ = ∂σα

∂xµ

∂σβ

∂xµ

(2.4)

and g := det(gµν) where
√−g = J is the Jacobian of the transformation g := det(gµν).

Also, in (2.3) we are making the identification ∂0 ≡ ∂τ and ∂i = ∂σi
.

The canonical momentum associated with the field φ is

Pφ = J
∂τ

∂xµ

∂σα

∂xµ

∂φ

∂σα
, σ 0 = τ, σ i ≡ σ i, (2.5)

and, following [9], we define the canonical momenta associated with the spacetime coordinates
as

pν ≡ −J
∂τ

∂xµ
T µ

ν, (2.6)

where T µ
ν = ∂µφ∂νφ − δµ

ν

(
1
2∂ρφ∂ρφ − V (φ)

)
is the unparametrized energy–momentum

tensor of the field. In terms of this momenta the Hamiltonian action becomes

S =
∫

dτ dDσ

(
Pφφ̇ + pµẋµ − λν

(
pν + J

∂τ

∂xµ
T µ

ν

))
, (2.7)

where we have introduced the definition of the momenta (2.6) as Hamiltonian constraints
due to the fact that the right hand side of (2.6) is independent of the velocities when the
energy–momentum tensor is expressed as a function of the canonical variables φ, Pφ [9].

We can write an alternate expression for action (2.7)—based on the foliation  × R of
spacetime, where R is the temporal direction and  is a space-like hypersurface of constant
τ—by introducing the vectors si tangent to , with components s

µ

i = ∂σ i xµ, and their duals
ŝi , with components si

α such that si
αsα

j = δi
j , and also introducing the unit vector n̂, normal to

this hypersurface, with components

nµ =
(√

g00ẋµ +
g0i√
g00

∂xµ

∂σ i

)
, i = 1, . . . , d, (2.8)

such that nµnµ = 1.
We can then write the (D+1)-vector constraint Π, with components �ν ≡ pν + J ∂τ

∂xµ T µ
ν ,

as

Π ≡ (n̂n̂ + ŝisi ) · Π = n̂H⊥ + ŝiHj , (2.9)

where (n̂n̂ + ŝisi ) is the unit dyadic, multiplication is with the Lorentzian metric,

H⊥ := n̂ · Π = nµ

(
pµ + J

∂τ

∂xν
T ν

µ

)

= 1

2
√−γ

(
P 2

φ + γ γ ij ∂σ i φ∂σj φ
)

+ nµpµ +
√−γV (φ) , (2.10)

Hj := sj · Π = (∂σj xµ)

(
pµ + J

∂τ

∂xν
T ν

µ

)
= Pφ∂σj φ + pµ∂σj xµ, (2.11)

and where γij ≡ gij is the D-metric of the -hypersurface, γ ij is the inverse matrix to γij and
γ is the determinant of γij . Inserting now (2.9) into (2.7) we can write

S =
∫

dτ dDσ(Pφφ̇ + pµẋµ − NH⊥ − NiHi ), (2.12)
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after identifying the projections λ · n̂, λ · ŝi of the Lagrange multipliers with the lapse and shift
functions N and Ni , respectively. H⊥ is the super-Hamiltonian and Hi are the super-momenta
for the system.

The Poisson brackets of these super-Hamiltonian and super-momenta are given by [17]

{H⊥(σ, τ ),H⊥(σ′, τ } =
D∑

i=1

(Hi (σ, τ ) + Hi (σ′, τ ))∂σ i δ(σ − σ′),

{Hi (σ, τ ),Hk(σ
′, τ )} = (Hk(σ, τ )∂σ i δ(σ − σ′) + Hi (σ

′, τ ))∂σk δ(σ − σ′),

{Hi (σ, τ ),H⊥(σ′, τ )} = (H⊥(σ, τ ))∂σ i δ(σ − σ′),

(2.13)

from where we see that the constraints are first class.
Let us now further simplify the calculations and the basic steps leading to a

noncommutative field theory by first considering our scalar field to be propagating in a flat
spacetime with Minkowskian coordinates (t, x) and signature (1,−1). In this case,

gµν = g−1

(
t

′2 − x
′2 −(t ′ ṫ − x ′ẋ)

−(t ′ ṫ − x ′ẋ) ṫ2 − ẋ2

)
(2.14)

and

g := det(gµν) = −(ṫx ′ − ẋt ′)2, (2.15)

where the primes denote partials with respect to σ while the dots are partials with respect to τ .
Explicit expressions for the momenta canonical to t, x and φ can be derived from (2.5)

and (2.6) or, even simpler, directly from (2.3), (2.14) and (2.15). They are given by

pt = − 1√−g
(ṫφ′2 − t ′φ′φ̇)− x ′V (φ)− x ′

2g
[(t ′2 − x ′2)φ̇2 − 2(t ′ ṫ − x ′ẋ)φ′φ̇ + (ṫ2 − ẋ2)φ′2],

px = 1√−g
(ẋφ′2 − x ′φ′φ̇) + t ′V (φ) +

t ′

2g
[(t ′2 − x ′2)φ̇2 − 2(t ′ ṫ − x ′ẋ)φ′φ̇ + (ṫ2 − ẋ2)φ′2],

Pφ = − 1√−g
[(t ′2 − x ′2)φ̇ − (t ′ ṫ − x ′ẋ)φ′]. (2.16)

From these expressions it can be readily verified that

pt ṫ + pxẋ + Pφφ̇ = L = √−g
(

1
2gµν∂µφ∂νφ − V (φ)

)
. (2.17)

Furthermore, because we are introducing the fields t (τ, σ ) and x(τ, σ ) as new degrees of
freedom, the theory must have constraints in the Hamiltonian formalism. Specifically, since
instead of our two original phase-space degrees of freedom we now have six, we thus need four
relations which we can get by two primary first-class constraints and two gauge conditions.

The primary constraints follow from specializing (2.10) and (2.11) to the case D = 1 and
are explicitly given by

H⊥ = (−γ )−
1
2
[

1
2

(
P 2

φ + φ′2) + ptx
′ + pxt

′ + (x
′2 − t

′2)V (φ)
] ≈ 0,

H1 = pxx
′ + pt t

′ + Pφφ′ ≈ 0.
(2.18)

Defining

H(⊥,1)[f ] :=
∫

dσf (σ)H(⊥,1)(σ, τ ), (2.19)

it can then be shown that
{H⊥[f ],H⊥[g]} = H1[fg′ − gf ′],

{H1[f ],H1[g]} = H1[fg′ − gf ′],

{H⊥[f ],H1[g]} = H⊥[fg′ − gf ′].

(2.20)
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Moreover, since the test functions f and g are arbitrary, we can take the functional derivatives
of (2.20) relative to them to arrive at

{H⊥(σ, τ ),H⊥(σ ′, τ } = (H1(σ, τ ) + H1(σ
′, τ ))δ′(σ − σ ′),

{H1(σ, τ ),H1(σ
′, τ )} = (H1(σ, τ ) + H1(σ

′, τ ))δ′(σ − σ ′),

{H1(σ, τ ),H⊥(σ ′, τ )} = (H⊥(σ, τ ))δ′(σ − σ ′),

(2.21)

where δ′(σ −σ ′) := ∂σ δ(σ −σ ′), which reproduce (2.13) for the case D = 1. Note that these
constraints close in the constant τ Poisson brackets according to the Virasoro algebra without
a central charge and they are first class, as we already know. But first-class constraints are
generically associated with gauge invariance, which in this case is the invariance of action
(2.3) under two-dimensional reparametrizations, with its generators satisfying algebra (2.21).

Also, since H = ∫
dσ(NH⊥ + N1H1) is the Hamiltonian of the theory, it clearly follows

that

Ḣ(⊥,1) = {H(⊥,1), H } ≈ 0, (2.22)

so the constraints are preserved by the ‘time’ τ evolution.
Next, in order to introduce spacetime noncommutativity in the Dirac quantization

procedure for the above theory, we need to implement an additional general symplectic
structure into our formalism.

2.2. Symplectic structure

For this purpose consider the following general first-order action:

S =
∫

dτ dσ(Aa(z)ż
a − NH̃⊥ − N1H̃1), (2.23)

with symplectic variables za = (t, x, φ, pt , px, Pφ). Here, H̃⊥ and H̃1 are weakly zero and
appropriately modified first-class constraints to be specified below. The six potentials Aa

play the role of momenta canonically conjugate to za . Action (2.23) allows us to generate
an arbitrary symplectic structure associated with the Poisson brackets in the Hamiltonian
formulation, but in order that it be equivalent to action (2.12) for D = 1, we need six
additional second-class primary constraints (these, together with the two first-class constraints
and their corresponding two compatibility conditions, give the relations needed to eliminate
ten of the twelve degrees of freedom in za’s).

The additional second-class constraints follow by noting that the canonical momenta
conjugate to za are given by

πza
= ∂ża (Aa(z)ż

a − NH̃⊥ − N1H̃1) = Aa(z), (2.24)

and since they are independent of the velocities they lead to the constraints

χa = πza
− Aa ≈ 0. (2.25)

Hence, the action of our constrained system is now given by

S =
∫

dτ dσ(Aa(z)ż
a − HT ), (2.26)

with

HT = NH̃⊥ + N1H̃1 + µaχa. (2.27)

Note that from (2.25) we have

{χa, χb} = ∂Ab

∂za

− ∂Aa

∂zb

:= ωab, (2.28)
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so the constraints χa are indeed second class (the Poisson brackets here are to be evaluated in
the extended phase space (za, πa)).

Moreover, in order that the consistency conditions

χ̇a =
{
χa,

∫
dσHT

}
= −N

∂H̃⊥
∂za

− N1 ∂H̃1

∂za
+ µbωab ≈ 0, (2.29)

˙̃H⊥,1 =
{
H̃⊥,1,

∫
dσHT

}
= µa

{
H̃⊥,1,

∫
dσχa

}
≈ 0 (2.30)

be satisfied, we need, solving (2.29) for µa , that

µa = ωab

(
N

∂H̃⊥
∂zb

+ N1 ∂H̃1

∂zb

)
, (2.31)

and also that

ωab

(
∂H̃⊥
∂za

∂H̃1

∂zb

)
≈ 0, (2.32)

which results from inserting (2.31) into (2.30) and using the arbitrariness of the Lagrange
multipliers.

Introducing now the Dirac brackets

{ξ, ρ}∗ := {ξ, ρ} − {ξ, χa}ωab{χb, ρ}, (2.33)

it readily follows that

{H̃⊥, H̃1}∗ = ωab

(
∂H̃⊥
∂za

∂H̃1

∂zb

)
. (2.34)

Hence, in order to satisfy the compatibility condition (2.30) we need to choose our modified
constraints H̃⊥, H̃1 such that their Dirac bracket is weakly zero. We shall defer the proof that
such a choice indeed exist for later on, and note at this point that

{χa, χb}∗ = 0. (2.35)

We can therefore treat χa as strongly zero in our formalism, after replacing the Poisson brackets
by the Dirac brackets. Note also that (2.33) implies

{za, zb}∗ = ωab, (2.36)

and by assuming further that the symplectic structure is determined by

ωab =




0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 0 0 θ 0
0 1 0 −θ 0 0
0 0 1 0 0 0




, ωab =




0 θ 0 1 0 0
−θ 0 0 0 1 0
0 0 0 0 0 1

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0




, (2.37)

we find that (2.37) incorporates spacetime noncommutativity into the formalism. In particular
upon quantization the strong equations χa = 0 need to be promoted to a relation between
quantum operators:

π̂za
− Âa = 0, (2.38)



10374 M Rosenbaum et al

and we have from (2.36) that at equal τ

[t̂ (τ, σ ), x̂(τ, σ̃ )] = iθδ(σ − σ̃ ),

[t̂ (τ, σ ), p̂t (τ, σ̃ )] = iδ(σ − σ̃ ),

[x̂(τ, σ ), p̂x(τ, σ̃ )] = iδ(σ − σ̃ ),

[φ̂(τ, σ ), P̂φ(τ, σ̃ )] = iδ(σ − σ̃ ).

(2.39)

We turn now to the derivation of the explicit form for the modified first-class constraints
H̃⊥ and H̃1, by observing that the formalism requires that their algebra should now close
relative to the Dirac brackets. This can be achieved by further noting that

{t̃ , x̃}∗ = 0, (2.40)

where

t̃ = t +
θ

2
px, x̃ = x − θ

2
pt . (2.41)

This selection of t̃ , x̃ variables is not unique, since there exist an infinite number of possible
choices all of which are related by canonical transformations that leave invariant the symplectic
structure (2.37). At the quantum level, however, only those theories which are related by linear
canonical transformations will be equivalent.

Now, taking into account that the Dirac-bracket algebra of the variables
(t̃ , x̃, φ, pt , px, Pφ) is the same as the Poisson algebra of (t, x, φ, pt , px, Pφ), it therefore
follows that by setting H̃(⊥,1)(z

a) = H(⊥,1)(z̃
a) we immediately have

{H̃⊥(τ, σ ), H̃⊥(τ, σ ′}∗ = (H̃1(τ, σ ) + H̃1(τ, σ
′))δ′(σ − σ ′),

{H̃1(τ, σ ), H̃1(τ, σ
′)}∗ = (H̃1(τ, σ ) + H̃1(τ, σ

′))δ′(σ − σ ′), (2.42)

{H1(τ, σ ),H⊥(τ, σ ′)}∗ = (H̃⊥(τ, σ ))δ′(σ − σ ′),

with

H̃⊥ = (−γ̃ )−
1
2

[
1

2

(
P 2

φ + φ
′2) + pt

(
x − θ

2
pt

)′
+ px

(
t +

θ

2
px

)′

+

((
x − θ

2
pt

)′2

−
(

t +
θ

2
px

)′2
)

V (φ)

]
≈ 0, (2.43)

H̃1 = px

(
x − θ

2
pt

)′
+ pt

(
t +

θ

2
px

)′
+ Pφφ′ ≈ 0.

It is interesting to note here that constraints (2.18) also appear in string theory, see, e.g.,
[10, 11]. One could then ask if there might also be a string theory from where constraints
(2.43) would arise or if it is possible to apply the deformations proposed in our paper to the
string and see if from such a procedure a NCOS theory could appear [19, 20].

When quantizing, the constraints H̃⊥,1 are promoted to the rank of operators satisfying
the subsidiary conditions

ˆ̃H⊥|�〉 = 0, ˆ̃H1|�〉 = 0. (2.44)

Also for consistency we need that at the quantum level the additional condition

[ ˆ̃H⊥, ˆ̃H1]|�〉 = 0 (2.45)

be satisfied. This implies that the commutator of the first-class constraint operators has to be
of the form

[ ˆ̃H⊥(τ, σ ), ˆ̃H1(τ, σ
′)] = ĉ⊥(σ, σ ′) ˆ̃H⊥ + ĉ1(σ, σ ′) ˆ̃H1, (2.46)
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where, in general, ĉ(⊥,1) are functions of the field operators that need to appear to the

left of ˆ̃H(⊥,1). This, in turn, involves finding the operator ordering needed to achieve this
requirement in order to have an appropriate quantum theory. In the present case this does not
constitute an important issue, since ordering for the super-Hamiltonian is immaterial and the
difference in placing the momenta to the right or to the left of the coordinates in the super-
momentum leads to a term which in the basis |t (σ ), px(σ ), φ(σ )〉 (see the paragraph following
equation (2.50)) is of the form ∂σ δ(σ −σ ′)|σ=σ ′�(t(σ ), px(σ ), φ(x(σ ), t (σ )), τ ) and which,
because of the antisymmetry of the delta-function derivative, can be put equal to zero. We
therefore choose the following ordering for ˆ̃H(⊥,1):

ˆ̃H⊥ = (−γ̃ )−
1
2

[
1

2

(
P̂φ

2
+ φ̂

′2
)

+ p̂t

(
x̂ − θ

2
p̂t

)′
+ p̂x

(
t̂ +

θ

2
p̂x

)′

−
((

t̂ +
θ

2
p̂x

)′2

−
(

x̂ − θ

2
p̂t

)′2
)

V
(
φ̂
) ]

≈ 0, (2.47)

ˆ̃H1 = p̂x

(
x̂ − θ

2
p̂t

)′
+ p̂t

(
t̂ +

θ

2
p̂x

)′
+ P̂φφ̂′ ≈ 0.

Making repeated use of the identity

f (σ ′)δ′(σ − σ ′) = f ′(σ )δ(σ − σ ′) + f (σ)δ′(σ − σ ′) (2.48)

in the evaluation of the commutator of these two operators, we get

2P̂φ(σ )P̂φ(σ ′)δ′(σ − σ ′) = (P̂ 2
φ (σ ) + P̂ 2

φ (σ ′))δ′(σ − σ ′),

2 ˆ̃x
′
(σ ) ˆ̃x

′
(σ ′)δ′(σ − σ ′) = ( ˆ̃x

′2
(σ ) + ˆ̃x

′2
(σ ′))δ′(σ − σ ′),

2ˆ̃t
′
(σ )ˆ̃t

′
(σ ′)δ′(σ − σ ′) = (ˆ̃t

′2
(σ ) + ˆ̃t

′2
(σ ′))δ′(σ − σ ′),

(p̂t (σ ) ˆ̃x
′
(σ ′) + p̂t (σ

′) ˆ̃x
′
(σ ))δ′(σ − σ ′) = (p̂t (σ ) ˆ̃x

′
(σ ) + p̂t (σ

′) ˆ̃x
′
(σ ′))δ′(σ − σ ′),

(p̂x(σ )ˆ̃t
′
(σ ′) + p̂x(σ

′)ˆ̃t
′
(σ ))δ′(σ − σ ′) = (p̂x(σ )ˆ̃t

′
(σ ) + p̂x(σ

′)ˆ̃t
′
(σ ′))δ′(σ − σ ′),

( ˆ̃x
′2
(σ ) + ˆ̃t

′2
(σ ))[V (φ̂(σ )), P̂φ(σ ′)]φ′(σ ′) = i( ˆ̃x

′2
(σ ′) + ˆ̃t

′2
(σ ′))∂σV (φ̂(σ ))δ(σ − σ ′)

= i( ˆ̃x
′2
(σ ′) + ˆ̃t

′2
(σ ′))(V (φ̂(σ ′)) − V (φ̂(σ )))δ′(σ − σ ′). (2.49)

From these relations it follows that

[ ˆ̃H⊥(τ, σ ), ˆ̃H1(τ, σ
′)] = i( ˆ̃H⊥(τ, σ ) + ˆ̃H⊥(τ, σ ′))δ′(σ − σ ′). (2.50)

Hence our choice (2.47) is indeed of the form (2.46) and results in an appropriate Dirac
quantization of the theory. In this parametrized quantization all the dynamics is hidden
in the constraints although, because of the noncommutativity of the coordinate field
operators t (τ, σ ), x(τ, σ ), we cannot construct configuration space-state functionals of the
form �[t (σ ), x(σ ), φ(σ ), τ ] = 〈t (σ ), x(σ ), φ(σ )|�(τ)〉 with the usual interpretation of a
probability amplitude that the scalar field φ has a definite distribution φ(σ) on a curved
spacelike hypersurface defined by t = t (σ ), x = x(σ ) at time τ . (Note that in the
Schrödinger picture the dynamical variables do not depend on τ .) We can, however, construct
state amplitudes from mixed momenta and reduced configuration space eigenkets such as
|t (σ ), px(σ ), φ(σ )〉. In this basis x̂ and p̂t are represented by

x̂ = i

(
δ

δpx(σ )
− θ

δ

δt (σ )

)
, (2.51)

p̂t = −i
δ

δt (σ )
, (2.52)
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so that from (2.47) we get(
θ

2

∂

∂σ

δ2

δt (σ )δt (σ )
− ∂

∂σ

δ

δt (σ )

δ

δpx(σ )

)
�[t (σ ), px(σ ), φ(σ )]

=
[

1

2

(
− δ2

δφ(σ )δφ(σ )
+ φ′2

)
+ px

(
t ′ +

θ

2
p′

x

)

−
((

t ′ +
θ

2
p′

x

)2

+
∂2

∂σ 2

(
δ

δpx(σ )
− θ

2

δ

δt (σ )

)2
)

V (φ)

]
� (2.53)

and[
px

∂

∂σ

(
δ

δpx(σ )
− θ

2

δ

δt (σ )

)
−

(
t ′ − θ

2
p′

x

)
δ

δt (σ )
− φ′ δ

δφ

]
�[t (σ ), px(σ ), φ(σ )] = 0.

(2.54)

Thus, introducing noncommutativity by parametrizing the action in the Dirac first quantization
of the scalar-field scheme leads us necessarily to the above two-fold infinity of coupled
equations. Equations (2.53) and (2.54) are the analogous of the Wheeler–De Witt equations
for our noncommutative scalar field, and they cannot be reduced to a Schrödinger-like equation
as in the commutative case, because here we cannot solve explicitly the super-Hamiltonian
and super-momentum constraints for the momenta pt and px . It is not our objective here to
investigate this system any further. It is important however to note that the non-locality of
the theory is reflected in these equations, so extreme care is required when regularizing these
expressions in such a way that this regularization does not break the deformed symmetries
generated by the constraints. Furthermore, the definition of the scalar product of the wave
functionals �[t (σ ), px(σ ), φ(σ )] must imply the unitarity of the theory.

In the following, we analyze the deformed symmetries which result from the deformed
constraints of the theory, which in turn result from the spacetime noncommutativity, and derive
a general anzatz for constructing these deformed symmetries for any field theory.

3. Spacetime noncommutativity and deformed symmetries

We have seen that the Dirac-bracket algebra (2.42) together with (2.43) provides an algorithm
for constructing the deformed gauge symmetries associated with the reparametrization
invariance of action (2.3), where a symplectic structure was introduced in order to allow for the
appearance of spacetime noncommutativity when applying Dirac’s procedure for canonical
quantization to the original action. In fact, making use of (2.36) one can show that

{tn(τ, σ ), xm(τ, σ ′)}∗ = nmθtn−1(τ, σ )xm−1(τ, σ ′)δ(σ − σ ′). (3.1)

On the other hand, evaluating the Moyal product (xµ)n �θ (xν)m with the bidifferential

�θ := exp

[
i

2
θµν

∫
dσ ′′

←−
δ

δxµ(τ, σ ′′)

−→
δ

δxν(τ, σ ′′)

]
, (3.2)

and comparing with (3.1), we have that

{tn(τ, σ ), xm(τ, σ ′)}∗ ∼= [tn(τ, σ ), xm(τ, σ ′)]�θ

:= tn(τ, σ ) �θ xm(τ, σ ′) − xm(τ, σ ′) �θ tn(τ, σ ). (3.3)

More generally, for Dirac brackets of arbitrary A(τ, σ ), B(τ, σ ) functionals of
t (τ, σ ), pt (τ, σ ), x(τ, σ ), px(τ, σ ), φ(τ, σ ) and Pφ(τ, σ ) we get

{A(τ, σ ), B(τ, σ ′)}∗ ∼= [A(τ, σ ), B(τ, σ ′)]�θ
, (3.4)
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after identifying the momenta in the left-hand side of the above equation with their
corresponding differential operators on the right-hand side. We thus have a morphism from
the Poisson–Dirac algebra of functionals of t, x, φ, pt , pxandPφ , to the algebra of differential
operators obtained from these functionals (after making the maps pt �→ −iδ/δt , px �→
−iδ/δx, Pφ �→ −iδ/δφ) with multiplication given by the �θ -product commutator.

Applying now the above-described algebra morphism to (2.42) results in

[H̃�
⊥(τ, σ ), H̃�

⊥(τ, σ ′)]�θ = (H̃�
1(τ, σ ) + H̃�

1(τ, σ
′))δ′(σ − σ ′),

[H̃�
1(τ, σ ), H̃�

1(τ, σ
′)]�θ = (H̃�

1(τ, σ ) + H̃�
1(τ, σ

′))δ′(σ − σ ′), (3.5)

[H̃�
1(τ, σ ), H̃�

⊥(τ, σ ′)]�θ = (H̃�
⊥(τ, σ ))δ′(σ − σ ′).

Here, the notation H̃�
(⊥,1) stands for the differential operators

H̃�
⊥,1(τ, σ ) := H⊥,1(τ, σ ) exp

[
− i

2
θµν

∫
dσ ′′

←−
δ

δxµ(τ, σ ′′)

−→
δ

δxν(τ, σ ′′)

]
, (3.6)

and their algebra multiplication µθ is given by

µθ(H̃�
i ⊗ H̃�

j ) = H̃�
i � H̃�

j , i, j =⊥, 1. (3.7)

Note that from (3.6) it follows that

[H̃�
i (τ, σ ), H̃�

j (τ, σ
′)]�θ = [Hi (τ, σ ),Hj (τ, σ

′)] e[− i
2 θµν

∫
dσ ′′ ←−

δ

δxµ(τ,σ ′′)
−→
δ

δxν (τ,σ ′′) ]
, i, j =⊥, 1

(3.8)

and substituting (3.6) and (3.8) into (3.5) we get

[H⊥(τ, σ ),H⊥(τ, σ ′)] = (H1(τ, σ ) + H1(τ, σ
′))δ′(σ − σ ′),

[H1(τ, σ ),H1(τ, σ
′)] = (H1(τ, σ ) + H1(τ, σ

′))δ′(σ − σ ′), (3.9)

[H1(τ, σ ),H⊥(τ, σ ′)] = (H⊥(τ, σ ))δ′(σ − σ ′),

which is the algebra of differential operator generators isomorphic to the non-deformed algebra
(2.21).

Furthermore, since by (2.18)

{φ,H⊥} = (−γ )−
1
2

[
(x ′2 − t ′2)√−g

φ̇ +
(t ′ ṫ − x ′ẋ)√−g

φ′
]

,

{φ,H1} = φ′,
(3.10)

the generators Hi of (2.21)—the Virasoro algebra V—can be viewed as derivations acting on
elements φ(t (τ, σ ), x(τ, σ )) of the algebra of functions A, with point multiplication µ. That
is,

{φ,H⊥} ∼= Ĥ⊥ � φ = (−γ )−
1
2

(
(x ′2 − t ′2)√−g

∂τ +
(t ′ ṫ − x ′ẋ)√−g

∂σ

)
� φ

{φ, Ĥ1} ∼= Ĥ1 � φ = ∂σ � φ.

(3.11)

In addition, since Ĥi ∈ V̂ is a (infinite-dimensional) Lie algebra, its universal envelope U(V̂)

can be given by the structure of a Hopf algebra with coproduct

�(Ĥi ) = Ĥi ⊗ 1 + 1 ⊗ Ĥi , i =⊥, 1 (3.12)

and antipode

S(Ĥi ) = −Ĥi , i =⊥, 1, (3.13)
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so A is a left module algebra over U(V̂). In parallel, for the symplectic structure (2.37) we

have the algebra V̂� of derivation operators ˆ̃H
�

i , defined in analogy to (3.6) by

ˆ̃H
�

⊥,1(τ, σ ) := Ĥ⊥,1(τ, σ ) exp

[
− i

2
θµν

∫
dσ ′′

←−
δ

δxµ(τ, σ ′′)

−→
δ

δxν(τ, σ ′′)

]
, (3.14)

with multiplication µθ generated by (3.4), and the corresponding left module algebra Aθ over
U(V̂�), whose elements are now functions φ(t (τ, σ ), x(τ, σ )) with multiplication µθ inherited
from (3.3).

From (3.14) it immediately follows that

ˆ̃H
�

i �θ φ(t, x) = Ĥi � φ(t, x), (3.15)

so the action of elements of the twisted algebra V̂� on elements of Aθ is equal to the action
of the corresponding elements of the untwisted algebra on the corresponding elements of the
ordinary algebra A of functions of commuting variables. Thus, the morphism from V̂ to V̂� by

Ĥi �→ ˆ̃H
�

i (3.16)

induces the morphism from A to Aθ by

µ(f (t, x) ⊗ g(t, x)) �→ µθ(f (t, x) ⊗ g(t, x)). (3.17)

It should now be fairly obvious, by mere observation of the notation already introduced, how
our algorithm can be readily generalized to higher dimensional noncommutative spacetimes
with constant parameters of noncommutativity. Thus, the commutator relations for the
spacetime coordinate fields at equal times will now be given by

[xµ(τ,σ), xν(τ,σ′)] = iθµνδD(σ − σ′), (3.18)

where θµν = const. As in the bi-dimensional spacetime case, in the extended (2D + 4)-
dimensional reparametrized phase space with a general symplectic structure we can also
derive the algebra of constraints by introducing a new set of commuting coordinate fields
defined by

x̃µ(σ) = xµ(σ) +
θµν

2
pν(σ). (3.19)

The new constraints will then have the form

H̃⊥ = 1
2

(
P 2

φ + γ̃ γ̃ ij ∂σ i φ∂σj φ
)

+
√−γ̃ ñνpν − γ̃ V (φ) ≈ 0,

H̃i = Pφ∂σ i φ + pµ∂σ i x̃µ.
(3.20)

Furthermore, making use of the algebra morphism discussed at the beginning of this section
we then arrive at the twisted algebra

[H̃�
⊥(τ,σ), H̃�

⊥(τ, σ′)]�θ =
D∑

i=1

(H̃�
i (τ,σ) + H̃�

i (τ, σ′))∂σ i δ(σ − σ′),

[H̃�
i (τ,σ), H̃�

j (τ, σ′)]�θ = (H̃�
i (τ,σ)∂σj δ(σ − σ′) + H̃�

j (τ,σ
′)∂σ i δ(σ − σ′)),

[H̃�
i (τ,σ), H̃�

⊥(τ, σ′)]�θ = (H̃�
⊥(τ,σ))∂σ i δ(σ − σ′).

(3.21)

Let us now study the deformed symmetries generated by algebra (3.21). For this purpose
and also in order to make contact with some related results appearing in the literature, consider
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the canonical transformation

Hτ [ξ ] =
∫

d�σξα(τ, �σ)Hα(τ, �σ)

=
∫

d�σ(ξ⊥(τ, �σ)nα + ξa(τ, �σ)sα
a )Hα

=
∫

d�σ(ξ⊥(τ, σ )H⊥(τ, σ ) + ξa(τ, σ )Ha(τ, σ )), a = 1, . . . , D. (3.22)

Thus, for the extended parametrized fields we have

δxµ = {xµ(τ, �σ),Hτ [ξ ]} ∼= Ĥτ [ξ ] � xµ

=
∫

d�σ ′{xµ(τ, �σ), ξ⊥(τ, �σ′
)nα(τ, �σ′

)pα(τ, �σ′
) + ξa(τ, �σ′

)sα
a (τ, �σ′

)pα(τ, �σ′
)}

= (ξ⊥nα + ξasα
a )δµ

α = ξα(τ, �σ)
∂xµ

∂xα
, (3.23)

and

δφ(x(τ, �σ)) = {φ(x(τ, �σ)),Hτ [ξ ]} ∼= Ĥτ [ξ ] � φ(x(τ, �σ))

= ξ⊥√−g√−γ
g0α ∂φ

∂σα
+ ξa ∂φ

∂σ a
= (by (2.8))

= (
ξ⊥nβ + ξasβ

a

) ∂φ

∂xβ
= ξβ(τ, �σ)

∂φ(x(τ, �σ))

∂xβ
. (3.24)

Consequently the derivations Ĥτ [ξ ] ≡ δξ = ξα(x(τ, �σ)) ∂
∂xα |x(τ,�σ) can be seen as the complete

vector fields in the embedding x(τ, �σ) of the generators

ξ(x) := ξα(x)
∂

∂xα
∈ Ldiff M.

of the Lie algebra of spacetime diffeomorphisms.
Moreover, since [η, ρ] = £ηρ we have

[δη, δρ]φ = δ£ηρφ = Ĥτ [£ηρ] � φ ∼= {φ,Hτ [£ηρ]}
= Ĥτ [η] � [Ĥτ [ρ] � φ] − Ĥτ [ρ] � [Ĥτ [η] � φ]
∼= {{φ,Hτ [ρ]},Hτ [η]} − {{φ,Hτ [η]},Hτ [ρ]} = −{φ, {Hτ [η],Hτ [ρ]}}, (3.25)

after making use of the Jacobi identity. We therefore have the known (see, e.g., [18]) anti-
homomorphism between the Poisson algebra V , generated by (3.22), and the Lie algebra of
spacetime diffeomorphisms.

In going over to the noncommutative spacetime case, we proceed according to our
previously derived algorithm, i.e. we replace the Poisson brackets by Dirac brackets and
t → t̃ , x → x̃. Hence, we can now write the functorial diagrams

(3.26)

(3.27)
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i.e.

{φ,Hτ [ξ ]} ∼= δξ � φ �→ δ�
ξ � φ(x(τ, σ)). (3.28)

Note that equations (3.26)–(3.28) provide an explicit expression for the mapping δρ �→ δ�
ρ ,

which in turn imply

[δ�
ρ, δ

�
η]�θ = δ�

£ρη, (3.29)

δ�
ρ � (f � g) = δρ(f � g). (3.30)

We can now compare some of our results with those obtained in [21]. Thus, we have

that our equation (3.14) for the twisted derivations ˆ̃H
�

α corresponds to equation (3.26) in [21],
while algebra (3.29) and the derivation δ�

ρ correspond to equations (5.3) and (5.4) there. Note
also that since we had previously shown that the universal envelope U(V̂) had the structure of
a Hopf algebra, the above morphisms imply that U(V̂�) is also a Hopf algebra. We can obtain
an explicit expression for the coproduct by making use of the duality between the product and
coproduct, followed by the application of equations (3.30) and (3.6). Thus we get

µθ ◦ �(δ�
ρ)(f ⊗ g) = δ�

ρ � (f � g) = δρ(f � g) = µ(δρ ⊗ 1 + 1 ⊗ δρ)
(
e

i
2 θµν∂µ⊗∂ν f ⊗ g

)
=

∑
n

1

n!

(
i

2

)n

θµ1ν1 · · · θµnνn
[(

δ�
ρ � ∂µ1···µn

f
)

e− i
2 θµν

←−
∂ µ

−→
∂ ν � ∂ν1···νn

g

+
(
∂µ1···µn

f
)

e− i
2 θµν

←−
∂ µ

−→
∂ ν �

(
δ�
ρ � ∂ν1···νn

g
)]

= µθ ◦ [
e− i

2 θµν∂µ⊗∂ν (δ�
ρ ⊗ 1 + 1 ⊗ δ�

ρ) e
i
2 θµν∂µ⊗∂ν

]
(f ⊗ g). (3.31)

This result also compares with the Leibnitz rule given by equation (5.9) in [21]. Further
note that if we let F = e− i

2 θµν∂µ⊗∂ν ∈ U(V̂) ⊗ U(V̂) and define f � g = µθ(f ⊗ g) :=
µ(F−1 � (f ⊗ g)), we then have

δρ(f � g) = δρ � µ(F−1 � (f ⊗ g)) = µ[(�δρ)F−1 � (f ⊗ g)]

= µF−1[(F(�δρ)F−1)(f ⊗ g)]

= µθ [(F(�δρ)F−1)(f ⊗ g)]. (3.32)

Thus, the undeformed coproduct of the symmetry Hopf algebra U(V̂) is related to the Drinfeld
twist �F by the inner endomorphism �Fδρ := (F(�δρ)F−1) and, by (3.32), it preserves the
covariance:

δρ � (f · g) = µ ◦ [�(δρ)(f ⊗ g)] = (δρ(1) � f ) · (δρ(2) � g)

θ→ δ�
ρ � (f � g) = (δ�

ρ(1) � f ) � (δ�
ρ(2) � g), (3.33)

where we have used the Sweedler notation for the coproduct. Consequently, the twisting of
the coproduct is tied to the deformation µ → µθ of the product when the last one is defined
by

f � g := (
F−1

(1) � f
)(
F−1

(2) � g
)
. (3.34)

A more extensive discussion of the application of some of these algebras to the construction
of a deformed differential geometry for gravity theories may also be found in [21] as well as
other works cited therein.

If we now assume that the coefficients of the vector fields δξ are linear in the spacetime
variables, then the generators δρ in (3.31) become the infinitesimal generators of the Poincaré
transformations, and the coproduct defined in this equation reduces to the twisted coproduct
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considered by, e.g., [22]. We would like to stress, however, that while all the above-mentioned
papers, as well as a large number of others appearing in the literature, start from equating
spacetime noncommutativity with the noncommutativity of the parameters of the functions
denoting classical fields, and deforming the algebra of these fields via the Moyal �-product,
none of the algebras V̂� and Aθ in our approach are assumed a priori. In contrast, they
appear naturally, as does the spacetime noncommutativity, as a consequence of implementing
Dirac’s canonical quantization formalism for constrained systems with an arbitrary symplectic
structure. Note, in particular, that in our formalism the spacetime variables are dynamical, as
would be expected when viewing quantum mechanics as a minisuperspace of field theory, and
their noncommutativity results from the quantization of their Dirac brackets. The deformation
of the module algebra A—in which the fields originally lived—to Aθ , so that by (3.16) and
(3.17) functions of the field multiply according to µθ is in our formalism, again a consequence
of the spacetime noncommutativity resulting from the quantization of the Dirac brackets and
the concomitant deformation of the constraints associated with the symmetries of the field
Lagrangian.

With constraints (3.20) it is possible to construct a quantum theory in the Schrödinger
representation analogous to (2.53) and (2.54). As in that case, however, since these constraints
are no longer linear and algebraic in the momenta (they contain mixed products of pµ’s and
their derivatives), it is not possible to solve explicitly for the spacial momenta in order to
construct a Schrödinger-type equation. Nonetheless, it is still possible to show that the action
in the reduced configuration space is in agreement with the usually proposed noncommutative
field theory for a scalar field.

4. Concluding remarks

We have shown in this paper how, by considering a reparametrized Hamiltonian canonical
formulation of field theory consisting of embedding a spacial manifold  in the spacetime
manifold, it is possible to give spacetime a dynamical character and introduce spacetime
noncommutativity from first principles. We have accomplished this by resorting to an extended
phase space, leading to second-class constraints which, when removed according to the Dirac
quantization procedure, lead in turn to Dirac brackets. The latter then result in the deformed
symplectic structure for the spacetime coordinates and corresponding canonical momenta,
which yield the desired noncommutativity.

An important characteristic of our formulation is the automatic deformation of the
symmetry generators when the symplectic structure is deformed. Such a deformation being
imposed by the consistency conditions on the constraints (see the discussion in subsection 2.2),
which have as a result that the algebra of the deformed constraints is maintained in the
noncommutative case. This provides us then with a straightforward algorithm for constructing
the Drinfeld twist of the Hopf algebras that one can associate with the reparametrization
symmetry groups. In addition, our formalism can be readily extended to spacetimes of any
dimensions and to the consideration of different possible types of deformed products, of which
the Moyal product is just a particular case. Thus the formalism described here may also turn
out to be useful for achieving a better understanding of noncommutative theories in curved
backgrounds and twisted symmetries in Yang–Mills field theories, since in that latter case,
in addition to the constraints associated with the reparametrization, we will also have the
constraints associated with invariance under the gauge transformations

Aµ(x) → U(x)Aµ(x)U−1(x) + iU(x)∂µU−1(x),
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so the full set must then be analyzed in order to see how it is to be twisted when
noncommutativity is introduced.
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